Fluorescence quenching of dyes covalently attached to single-walled carbon nanotubes.

نویسندگان

  • Cheuk Fai Chiu
  • Nikolay Dementev
  • Eric Borguet
چکیده

The development of chromophore-carbon nanotube hybrids requires efficient and accurate methods to investigate their photophysical properties. Using the ability of the fluorescence labeling of surface species (FLOSS) technique to determine the density of covalently attached dyes to the surface of single-walled carbon nanotubes (SWCNTs), the luminescence of dye-SWCNT hybrids was quantitatively studied with two chromophores: dansyl hydrazine (DH) and panacyl bromide (PB). The fluorescence intensity of PB-SWCNT hybrids was reduced by 20-80% compared to that of free PB. A strong positive correlation between the degree of quenching and the residual metal impurity content in the SWCNT sample suggests that quenching of fluorescence of PB in PB-SWCNTs may be caused by the metal impurities and not by SWCNTs. On the contrary, the intensity of fluorescence of DH-SWCNT hybrids was reduced by almost 2 orders of magnitude compared to free DH, independent of the residual metal content in the SWCNT sample, suggesting that quenching of fluorescence in DH-SWCNT hybrids might occur via charge transfer from DH chromophores to SWCNTs, and revealing the potential of DH-SWCNT hybrids for solar light harvesting applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon nanotubes with covalently linked porphyrin antennae: photoinduced electron transfer.

Single- and multiwalled carbon nanotubes have been covalently functionalized with free-base porphyrin. The quantity of porphyrin linked to the surface was determined from thermogravimetric and UV-vis analysis. A reversible protonation equilibrium between the attached porphyrin and the residual acid groups of the carbon nanotubes has been identified. Steady-state fluorescence emission spectrum o...

متن کامل

Rsc_cp_c3cp51844b 3..9

Here we present a hybrid approach to functionalize multi-walled carbon nanotubes in aqueous solution, exploring a non-covalent binding strategy. We focus on formation of hybrid complexes consisting of carbon nanotubes decorated by single stranded DNA, non-covalently attached using surfactants as intermediate layers. Unlike single walled carbon nanotubes, revealing easy side wall wrapping of DNA...

متن کامل

Bio-functionalization of multi-walled carbon nanotubes.

Here we present a hybrid approach to functionalize multi-walled carbon nanotubes in aqueous solution, exploring a non-covalent binding strategy. We focus on formation of hybrid complexes consisting of carbon nanotubes decorated by single stranded DNA, non-covalently attached using surfactants as intermediate layers. Unlike single walled carbon nanotubes, revealing easy side wall wrapping of DNA...

متن کامل

A First-Principles Study on Interaction between Carbon Nanotubes (10,10) and Gallates Derivatives as Vehicles for Drug Delivery

First principles calculations were carried out for investigation the novel 7-hydroxycoumarinyl gallates derivatives in gas and liquid phases using density functional theory (DFT) method. Computational chemistry simulations were carried out to compare calculated quantum chemical parameters for gallates derivatives. All calculations were performed using DMol3 code which is based on DFT. The Doubl...

متن کامل

Density Functional Theory Calculations of Functionalized Carbon Nanotubes with Metformin as Vehicles for Drug Delivery

Drug delivery by nanomaterials is an active emergent research area and CNTs draws considerable potential application owing to its unique quasi one-dimensional structure and electronic properties. Single walled carbon nanotubes and carbon fullerenes can be used in drug delivery due to their mechanical and chemical stability. The past few years, increasing attention by several reputed groups has ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 115 34  شماره 

صفحات  -

تاریخ انتشار 2011